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BACKGROUND: As a ubiquitous environmental pollutant, methylmercury (MeHg) induces toxic effects in the nervous system, one of its main targets.
However, the exact mechanisms of its neurotoxicity have not been fully elucidated. Hypoxia-inducible factor-1a (HIF-1a), a transcription factor,
plays a crucial role in adaptive and cytoprotective responses in cells and is involved in cell survival, proliferation, apoptosis, inflammation, angiogene-
sis, glucose metabolism, erythropoiesis, and other physiological activities.

OBJECTIVES: The aim of this study was to explore the role of HIF-1a in response to acute MeHg exposure in rat brain and primary cultured astrocytes
to improve understanding of the mechanisms of MeHg-induced neurotoxicity and the development of effective neuroprotective strategies.

METHODS: Primary rat astrocytes were treated with MeHg (0–10 lM) for 0:5 h. Cell proliferation and cytotoxicity were assessed with a 3-(4,5-dime-
thylthiazol-2-yl)-2,5-diphenyl diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) release assay, respectively. Reactive ox-
ygen species (ROS) levels were analyzed to assess the level of oxidative stress using 2 0,7 0-dichlorofluorescin diacetate (DCFH-DA) fluorescence.
HIF-1a, and its downstream proteins, glucose transporter 1 (GLUT-1), erythropoietin (EPO), and vascular endothelial growth factor A (VEGF-A)
were analyzed by means of Western blotting. Real-time PCR was used to detect the expression of HIF-1a mRNA. Pretreatment with protein synthesis
inhibitor (CHX), proteasome inhibitor (MG132), or proline hydroxylase inhibitor (DHB) were applied to explore the possible mechanisms of HIF-1a
inhibition by MeHg. To investigate the role of HIF-1a in MeHg-induced neurotoxicity, cobalt chloride (CoCl2), 2-methoxyestradiol (2-MeOE2),
small interfering RNA (siRNA) transfection and adenovirus overexpression were used. Pretreatment with N-acetyl-L-cysteine (NAC) and vitamin E
(Trolox) were used to investigate the putative role of oxidative stress in MeHg-induced alterations in HIF-1a levels. The expression of HIF-1a and
related downstream proteins was detected in adult rat brain exposed to MeHg (0–10 mg=kg) for 0:5 h in vivo.

RESULTS: MeHg caused lower cell proliferation and higher cytotoxicity in primary rat astrocytes in a time- and concentration-dependent manner. In
comparison with the control cells, exposure to 10 lM MeHg for 0:5 h significantly inhibited the expression of astrocytic HIF-1a, and the downstream
genes GLUT-1, EPO, and VEGF-A (p<0:05), in the absence of a significant decrease in HIF-1a mRNA levels. When protein synthesis was inhibited
by CHX, MeHg promoted the degradation rate of HIF-1a. MG132 and DHB significantly blocked the MeHg-induced decrease in HIF-1a expression
(p<0:05). Overexpression of HIF-1a significantly attenuated the decline in MeHg-induced cell proliferation, whereas the inhibition of HIF-1a signifi-
cantly increased the decline in cell proliferation (p<0:05). NAC and Trolox, two established antioxidants, reversed the MeHg-induced decline in
HIF-1a protein levels and the decrease in cell proliferation (p<0:05). MeHg suppressed the expression of HIF-1a and related downstream target pro-
teins in adult rat brain.
DISCUSSION: MeHg induced a significant reduction in HIF-1a protein by activating proline hydroxylase (PHD) and the ubiquitin proteasome system
(UPS) in primary rat astrocytes. Additionally, ROS scavenging by antioxidants played a neuroprotective role via increasing HIF-1a expression in
response to MeHg toxicity. Moreover, we established that up-regulation of HIF-1a might serve to mitigate the acute toxicity of MeHg in astrocytes,
affording a novel therapeutic target for future exploration. https://doi.org/10.1289/EHP5139

Introduction
Methylmercury (MeHg) is a global environmental contaminant
targeting the central nervous system (CNS) (Farina and Aschner
2017; Santos et al. 2016). Consumption of MeHg-containing fish
products (Canuel et al. 2006; Carrasco et al. 2011; Steuerwald
et al. 2000; Stopford and Goldwater 1975) and rice (Rothenberg
et al. 2014; Zhang et al. 2010) has been shown to induce neurode-
generation as well as be associated with neurodevelopmental

disorders (Belletti et al. 2002; Carocci et al. 2014; Ceccatelli et al.
2010). However, the underlying cellular and molecular mecha-
nisms of MeHg-induced neurotoxicity have yet to be fully eluci-
dated. Meanwhile, there is still a lack of treatment to effectively
protect against MeHg-induced brain damage.

Hypoxia-inducible factor-1 (HIF-1), a DNA-binding tran-
scription factor, plays a crucial role in a diverse range of
adaptive responses to oxygen tension. HIF-1 is a heterodimer
comprising an oxygen-labile a-submit (HIF-1a) and a consti-
tutively expressed b-submit (HIF-1b). Under normal oxygen
conditions (>5% O2), prolyl hydroxylase (PHD) has been
shown to mediate hydroxylation of HIF-1a (Berra et al. 2003;
Ivan et al. 2001). Hydroxylated HIF-1a is rapidly degraded by
the ubiquitin proteasome system (UPS), mediated by interaction
with the von-Hippel Lindau tumor suppressor gene product
(pVHL) (Bruick and McKnight, 2001; Lee et al. 2007). Under
hypoxic conditions (<5% O2) or stimulation by other environ-
mental factors, stabilized HIF-1a dimerizes with HIF-1b to
transactivate a series of adaptive genes, including vascular en-
dothelial growth factor A (VEGF-A), glucose transporter 1
(GLUT-1), and erythropoietin (EPO) (Semenza and Wang,
1992). Several metals and organic chemicals have been shown
to affect HIF-1a expression and activity (Dong et al. 2016; Lee
et al. 2009; Liao et al. 2014; Wikenheiser et al. 2013; Wu et al.
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2010), whereas increased expression of HIF-1a has been shown
to be protective against neurotoxicants (Feng et al. 2014; Lee
et al. 2009; Wu et al. 2010). Manganese has also been shown to
increase HIF-1a protein levels in Hep2 cells by regulating
mitogen-activated protein kinases (MAPKs) (Shin et al. 2010).
Clioquinol (a copper and zinc chelator) decreased HIF-1a deg-
radation by inhibiting HIF-1a ubiquitination and hydroxylation
in SH-SY5Y cells and HepG2 cells, whereas addition of copper
and zinc reversed these effects (Choi et al. 2006). Cadmium
was shown to up-regulate HIF-1a expression in human lung
epithelial cells via the production of reactive oxygen species
(ROS) through the activation of the protein kinase B (Akt), and
extracellular signal-regulated protein kinase (ERK) signaling
pathways (Jing et al. 2012). Notably, deferoxamine (DFO), an
iron chelator, was shown to attenuate neuronal cell death and the
generation of ROS caused by MeHg and methylphenyl tetrahydro-
pyridine (MPTP) in in vivo rodent models (Guo et al. 2016; LeBel
et al. 1992). Furthermore, it was shown that by inhibiting the activ-
ity of proline hydroxylase (PHD) in mouse hippocampal neurons,
DFO decreased degradation of HIF-1a and increased intracellular
levels of HIF-1a protein (Hamrick et al. 2005). Recently, several
studies have further documented that HIF-1a is neuroprotective
because it drives the expression of critical genes that diminish neu-
ronal cell death (Chen et al. 2017; Sen and Sen 2016). Increased
HIF-1a expression and activity have been shown to promote glycol-
ysis and glucose metabolism, thus countering oxidative stress by
producing NADH and NADPH to propagate neuroprotective
responses (Soucek et al. 2003). HIF-1a has also been shown to
improve cerebral blood flow, which could oppose the toxicity of hy-
poxia (Iyalomhe et al. 2017). Overexpression of HIF-1a and/or
HIF-1a target genes, such as VEGF-A and EPO, may be an early
adaptation to the oxidative stressors that characterize MeHg-
induced neuropathology. Thus, we speculate that the molecular
events that constitute this early adaptation are likely neuroprotective
and might mitigate neuronal injury caused by MeHg.

Previous studies have indicated an association between
HIF-1a activity and intracellular ROS production. ROS was
reported to promote HIF-1a accumulation by the inhibition
of PHD catalytic activity via the oxidization of PHD-bound
Fe2+ (Koivunen et al. 2007; Pan et al. 2007). However, it has
been noted that a paradox exists between them, because the
HIF-1a-dependent transcriptional program can prevent mito-
chondrial ROS generation (Jain et al. 2016). It is unclear whether
MeHg-induced toxicity is associated with the expression of HIF-1a,
whereas the specific relationship between ROS production and
HIF-1a also remains unclear. MeHg predominantly accumulates in
the CNS, particularly in astrocytes; the latter have been shown to
play an important role in mediating MeHg-induced neurotoxicity
(Ceccatelli et al. 2010; Shanker et al. 2003), inhibit glutamate
uptake, and contribute to secondary excitotoxicity (Aschner et al.
2000; Deng et al. 2014; Liu et al. 2013, 2014). Astrocytes perform
diverse important functions in providing support and nutrition
(Abbott 2002; Rudge et al. 1994), inducing neuronal differentiation
(Barkho et al. 2006) and mediating immune responses (Aschner
1998a, 1998b; Jensen et al. 2013). Therefore, we aimed to investi-
gate the role of HIF-1a in MeHg-induced acute neurotoxicity by
using primary rat astrocytes and adult rats, with special emphasis on
an ROS mode of toxicity, so as to further identify novel therapeutic
targets against MeHg-induced neuronal injury.

Materials and Methods

Primary Rat Astrocyte Isolation and Culture
Sprague-Dawley (SD) rats at the 1–2-d postnatal stage were pur-
chased from the Laboratory Animal Center of Jiangsu University.

Primary neonatal rat astrocytes were prepared as previously
described (Bai et al. 2015, 2016; Fang et al. 2016; Yang et al.
2018; Yin et al. 2011). The procedures were as follows: Rats
were rapidly decapitated, and the cerebral hemispheres were
quickly obtained and rinsed with 4°C phosphate buffered solution
(PBS). After dissecting away part of the meninges, basal ganglia,
midbrain, and blood vessels, the remaining cortical tissues were
cut into 1mm3 pieces and dissociated with 0.25% trypsin (Gibco)
for 15 min at room temperature in the absence of stirring. Cells
were grown in Dulbecco’s Modified Eagle Medium (DMEM;
Hyclone) containing 10% fetal bovine serum (Gibco), and 1%
penicillin/streptomycin (Gibco). Culture medium was replaced
with fresh medium twice a week, and cultures were maintained in
a 5% CO2 environment at 37°C. Cultured cells were used for
experiments when astrocytes reached 75%–85% confluency.
Protocols were approved by the Animal Ethics Committee of
Jiangsu University of China and were carried out in accordance
with the established Guiding Principles for Animal Research.

Reagents and Antibodies
Methylmercuric chloride (MeHgCl; Sigma-Aldrich) was dis-
solved in PBS to form a stock concentration of 10mM; MG132;
3,4-Dihydroxybenzoic acid (DHB); cobalt chloride (CoCl2); N-
acetyl-cysteine (NAC) and Trolox (6-hydroxy-2,5,7,8-tetra-
methylchroman-2-carboxylic acid); and 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyl diphenyltetrazolium bromide (MTT)]
were obtained from Sigma-Aldrich. Cycloheximide (CHX)
was purchased from MedChemExpress; 2-methoxyestradiol (2-
MeOE2) was purchased from Selleck Chemicals. For Western
blotting analysis, the primary polyclonal antibodies to HIF-1a,
VEGF-A, GLUT-1, and EPO were obtained from ImmunoWay,
and antibodies to HIF-1b and b-actin were obtained from Cell
Signaling Technology and CMATAG, respectively. Secondary
antibodies used for immunoblotting included horseradish perox-
idase (HRP)-conjugated antimouse (Santa Cruz Biotechnology) or
anti-rabbit antibodies (Santa Cruz Biotechnology).

Cell Treatment
Astrocytes were treated for 0:5 h with MeHg at concentrations
of 1.0, 2.5, 5.0, or 10 lM in the medium, and the cells treated
by culture medium without MeHg were used as the control
group. These concentrations were used in previous studies (Allen
et al. 2001; Shapiro and Chan 2008). H2O2 (6 lM, 0:5 h), CHX
(400 lM, 0.5, 1, or 2 h), MG132 (1 lM, 24 h), DHB (1mM,
6 h), CoCl2 (200 lM, 0:5 h), 2-MeOE2 (10 lM, 0:5 h), and NAC
(2:5mM, 4 h) or Trolox (2:5mM, 4 h) were administered prior to
MeHg treatment.

Cell Proliferation Assay
Cell proliferation was measured in astrocytes cultured in 96-well
plates (1 × 104=well) using the MTT assay. At the end of treat-
ment, MTT was added to each well at a final concentration of
0:5 mg=mL and incubated at 37°C for 4 h. Next, the MTT solu-
tion was replaced with dimethyl sulfoxide (150 lL=well) for 10
min to dissolve the dark-blue formazan crystals in intact cells,
and the absorbance was measured at 490 nm with a Bio-Rad 680
Microplate Reader (Bio-Rad Laboratories).

Lactate Dehydrogenase (LDH) Release Assay
Cytotoxicity was detected using an LDH release assay kit
(Jiancheng Bioengineering Institute of Nanjing) according to the
manufacturer’s protocol. Cells were cultured in 96-well plates
(1 × 104=well), and after treatment supernatants were transferred

Environmental Health Perspectives 127006-2 127(12) December 2019



to clean 96-well plates. Absorbance was analyzed at 450 nm
using a Bio-Rad 680 Microplate Reader.

Measurement of Intracellular ROS Generation
To measure ROS generation, a fluorometric assay was carried out
using the cell membrane permeable dye 20,70-dichlorofluorescin
diacetate (DCFH-DA). In the quantitative experiment of fluores-
cence intensity, cells cultured in 96-well plate (1 × 104=well)
were treated with different concentrations of MeHg (1, 2.5, 5,
and 10 lM) for 0:5 h and were then incubated with 10 lmol=L
DCFH-DA in serum-free medium for 0:5 h at 37°C. After wash-
ing with PBS, the fluorescence intensity was measured with
Cytation™ 5 (Biotek), with an excitation wavelength of 488 nm
and an emission wavelength of 525 nm. In the imaging experi-
ment, cells cultured in 24-well plates (5 × 104=well) were treated
with MeHg (10 lM, 0:5 h) or H2O2 (6 lM, 0:5 h). After wash-
ing with PBS, the nuclei were stained with 4 0,6-diamidino-2-
phenylindole (DAPI) for 15 min at room temperature. Then the
cells were incubated with 10 lmol=L DCFH-DA in serum-free
medium for 0:5 h at 37°C. Finally, the resulting fluorescence
was detected with a fluorescence microscope (Zeiss Axio
Observer). Cells treated with H2O2 were used as the positive
control. The intensity of fluorescence reflects the extent of oxi-
dative stress.

Western Blotting Analysis
To prepare the whole protein lysate, cells were washed three
times with cold PBS, lysed in lysis buffer (RIPA lysis buffer con-
taining 1% PMSF, obtained from Beyotime), incubated on ice for
15 min, and collected after 12,000× g centrifugation at 4°C for
15 min. The protein concentration was determined by a BCA pro-
tein assay reagent kit (Beyotime). A total of 60 lg of cell total
protein was separated using 10% or 12% SDS-PAGE, then trans-
ferred to a PVDF membrane (Millipore). After being blocked
with 5% skim milk in TBST (10 mM Tris–HCl, 120 mM NaCl,
0.1% Tween® 20, pH 7.4) for 2 h at room temperature, the mem-
branes were incubated with specific primary antibodies overnight
at 4°C (Table 1). On the second day, the membranes were
washed three times with TBST buffer and further incubated with
HRP-labeled secondary antibodies at room temperature for 1 h,
and then washed three times in TBST. Finally, signal density of
the immunoblots was performed using the MiniChemi Mini
Size Chemiluminescent Imaging System (Beijing Sage Creation
Science Co., Ltd.) and analyzed with Image J software (National
Institutes of Health).

Adenovirus-Mediated HIF-1a Overexpression
Adenovirus carrying the HIF-1a gene was obtained from Hanbio
Biotechnology Co., Ltd. Astrocytes were seeded in 6-well plates
at a 60% confluence, and cells were transfected with pHBAd-
EF1-MCS-GFP according to multiplicity of infection ðMOIÞ=
30× 108PFU=mL 8 h later, cells were supplemented with fresh

medium and continuously cultured for an additional 48 h to
observe transfection efficiency by means of Western blotting.

siRNA Transfection
The small interfering RNAs (siRNAs) for HIF-1a were designed
and purchased from Guangzhou Ribobio Co., Ltd. The sequences
of the three siRNAs were as follows:

#1 (siB07514101244) 5 0-TCGACAAGCTTAAGAAAGA
dTdT-3 0,

#2 (siB07514101312) 5 0-GGACAATATAGAAGACATT
dTdT-3 0 and

#3 (siG081230140326) 5 0-CTGATAACGTGAACAAATA
dTdT-3 0.

Astrocytes were plated in 6-well plates at 60% confluence,
transfected with HIF-1a siRNA (50 nM), or a negative control
(NC, a scrambled sequence) siRNA (50 nM) with Lipofectamine®2000
in Opti-MEM medium (Invitrogen), according to the manufac-
turer’s protocol. The transfected cells were incubated at 37°C
for an additional 48 h and validated the silencing efficacy via
Western blotting analysis.

Total RNA Extraction and Quantitative Real-Time PCR
(RT-PCR)
Total RNA was extracted from astrocytes using the TRIzol rea-
gent (Invitrogen). Five hundred nanograms of total RNA were
reverse-transcribed to cDNA using an RT reagent kit (TaKaRa),
which was then amplified with SYBR green dye on a CFX96
Real-Time PCR Detection System (Bio-Rad). The relative quan-
tification of mRNA levels was calculated using the standard
2‐DDCt relative quantification method.

The primers for rat HIF-1a and b-actin were designed and
synthesized by Shanghai Generay Biotech Co., Ltd (Shanghai,
China), and the sequences were as follows:

HIF-1a:
Forward primer: 50-TCACAAATCAGCACCAAGCAC-30
Reverse primer: 50-AAGGGGAAAGAACAAAACACG-30
b-actin:
Forward primer: 50-CCTAGACTTCGAGCAAGAGA-30
Reverse primer: 50-GGAAGGAAGGCTGGAAGA-30.

Animal Model
Male SD rats (8 wk old) weighing 200±20 g were obtained
from the Laboratory Animal Center of Jiangsu University
(Accreditation Number: SCXK [SU] 2018-0012). The rats
were housed in a temperature- and humidity-controlled room
(22±2�C and 50± 10% relative humidity) with a 12 h:12 h
light:dark cycle (dark phase from 1900 to 0700) and were
maintained on standard laboratory chow with ad libitum access
to water and food (n=6 per cage). The rats were acclimatized
for at least 7 d prior to MeHg exposure.

Rats were divided randomly into six groups (n=6):
Group I: Normal saline was injected intraperitoneally for

0:5 h

Table 1. Protein antibodies used for Western blotting.

Antibodies Source Catalog no. Lot Dilution

HIF-1a ImmunoWay YT2133 B3301 1:1,000
HIF-1b Cell Signaling Technology D28F3 2 1:1,000
GLUT-1 ImmunoWay YT1928 B2801 1:1,000
EPO ImmunoWay YM0237 B3701 1:1,000
VEGF-A ImmunoWay YT5108 B0801 1:1,000
b-actin CMCTAG AT0048 380436SB 1:10,000
Mouse antirabbit IgG-HRP Santa Cruz Biotechnology sc-2357 K0718 1:10,000
m-IgGj BP-HRP Santa Cruz Biotechnology sc-516102 E2318 1:10,000
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Group II: MeHg [2 mg=kg body weight (BW)] was injected
intraperitoneally for 0:5 h

Group III: MeHg (4 mg=kg BW) was injected intraperitone-
ally for 0:5 h

Group IV: MeHg (6 mg=kg BW) was injected intraperitone-
ally for 0:5 h

Group V: MeHg (8 mg=kg BW) was injected intraperitone-
ally for 0:5 h

Group VI: MeHg (10 mg=kg BW) was injected intraperitone-
ally for 0:5 h

At the end of the exposure period, the rats were anesthetized
by intraperitoneal (IP) injection of pentobarbital to alleviate any
potential discomfort and pain. Next, the brain cortices were rapidly
frozen in liquid nitrogen and transferred to a –80�C freezer. All
experimental procedures were conducted following a protocol
approved by the Animal Care and Use Committee and Animal
Ethics Committee of Jiangsu University (Accreditation Number:
SYXK [SU] 2013-0036). All animals used in this study were
treated humanely according to the institutional guidelines, with
full consideration for the alleviation of distress and discomfort.

Statistical Analysis
All data are presented as the mean± standard deviation (SD). All
assays were repeated at least three times with at least three inde-
pendently derived astrocyte cultures. Statistical significance was
assessed by analysis of variance (ANOVA) with correction for
multiple comparisons in post hoc analysis. CHX treatment assay

was analyzed by a two-way ANOVA with Dunnett’s post hoc
test. Other multiple comparisons were analyzed by one-way
ANOVA with Dunnett’s or Tukey’s post hoc test. All statistical
analyses were performed using GraphPad Prism software. A p
value of <0:05 was considered to be statistically significant.

Results

Effects of Methylmercury on Astrocyte Proliferation,
Cytotoxicity, and Production of ROS
To investigate the effects of MeHg on cell proliferation and cyto-
toxicity in astrocytes, we incubated astrocytes with this organo-
metal (0–10 lM) for 0:5 h. The MTT assay and LDH leakage
were subsequently assessed. As shown in Figure 1A, compared
with control cells, those treated with MeHg exhibited lower cell
proliferation, which appeared to be concentration-dependent.
MeHg treatment significantly increased LDH release in astro-
cytes, especially at concentrations of 5 and 10 lM (Figure 1B).
Exposure to MeHg (5 and 10 lM, 0:5 h) induced a ∼1.6-fold
increase in astrocytic LDH release compared with controls
(p<0:05). Next, we analyzed the effects of MeHg on ROS pro-
duction by 2 0,7 0-dichlorofluorescin diacetate (DCFH-DA) fluo-
rescence. As is shown in Figure 1C, MeHg at 5 and 10 lM
caused a significant increase in ROS formation. Additionally,
fluorescence images also showed that the fluorescence intensity
of ROS was obviously enhanced in MeHg (10 lM, 0:5 h) group
(Figure 1D).

Figure 1. Cell proliferation, cytotoxicity and ROS production after treatment with MeHg for 0:5 h in astrocytes. (A) Cell proliferation in astrocytes was meas-
ured using the MTT assay. (B) Cytotoxicity in astrocytes was detected via LDH release. (C) Effects of MeHg treatment on ROS production using the fluores-
cent probe DCFH-DA. The fluorescence intensity was detected by the microplate reader. (D) Representative images for ROS generation induced by MeHg
(10 lM, 0:5 h) treatment. Scale bar = 100 lm. H2O2 (6 lM, 0:5 h) was set as a positive control for ROS generation. Green fluorescence indicates ROS and
blue (DAPI) indicates the nucleus. Note: Data are presented as mean±SD from three independent experiments (n=3). con, control (culture medium treatment
without MeHg); DAPI, 4 0,6-diamidino-2-phenylindole; DCFH-DA, 2 0,7 0-dichlorofluorescin diacetate; H2O2, hydrogen peroxide; LDH, lactate dehydrogenase;
MeHg, methylmercury; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl diphenyltetrazolium bromide; ROS, reactive oxygen species. *p<0:05 vs. control by
one-way analysis of variance (ANOVA) with Dunnett’s post hoc test.
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Effects of Methylmercury on the Expression of
HIF-1a-Related Proteins in Astrocytes
We incubated astrocytes in the absence or presence of MeHg
(1–10 lM) for 0:5 h and assessed HIF-1a and HIF-1b expres-
sion by Western blotting. MeHg-treated astrocytes exhibited a
significant reduction in HIF-1a expression in a concentration-
dependent manner (Figure 2A). In contrast, HIF-1b remained
unaffected irrespective of the MeHg concentration (Figure 2B).
Next, we analyzed the expression of HIF-1a targets (GLUT-1,
EPO, and VEGF-A) in astrocytes treated with various concen-
trations of MeHg. A significant decrease in the expression of
GLUT-1, EPO, and VEGF-A proteins was observed in astro-
cytes treated with 10 lM MeHg for 0:5 h (p<0:05) (Figure
2C). These results are consistent with the ability of MeHg to
decrease astrocytic HIF-1a levels, followed by a decrease in,
GLUT-1, EPO, and VEGF-A expression.

Effects of Protein Synthesis, Proteasome, and PHD
Inhibitors on Protein Expression of HIF-1a and
Downstream Effectors in Methylmercury-Treated Astrocytes
To determine the means by which MeHg regulated HIF-1a
expression, we analyzed the expression of the HIF-1a gene with

RT-PCR. As shown in Figure 3A, MeHg pretreatment did not
affect HIF-1a mRNA levels. Therefore, we further explored the
potential causes of the significant reduction in HIF-1a levels
caused by MeHg in astrocytes. CHX is a broad-spectrum and
nonspecific protein synthesis inhibitor, and astrocytes were har-
vested after CHX pretreatment (400 lM) for 0.5, 1, and 2 h with
and without MeHg treatment (10 lM, 0:5 h). In addition, MeHg
treatment alone group (10 lM for 0.5, 1, and 2 h) was also estab-
lished. Then, HIF-1a protein expression was analyzed (Figure
3B). In comparison with the control group, the protein level of
HIF-1a in CHX alone group decreased in a time-dependent man-
ner. Notably, when compared with the corresponding time point
of CHX treatment alone group, the level of HIF-1a protein was
found to be significantly lower in the CHX+MeHg group
(p<0:05, Figure 3B). We pretreated astrocytes with or without
MG132 (1 lM, 24 h), a proteasome inhibitor, followed by
10 lM MeHg, and incubated the cells for an additional 0:5 h.
The cells were harvested at the end of the treatment, and the lev-
els of HIF-1a and its targets were measured via Western blotting.
As shown in Figure 3C, MG132 treatment inhibited the signifi-
cant MeHg-induced reduction in HIF-1a and its target proteins in
astrocytes. Previous research has suggested that HIF-1a degrada-
tion is attributable to the activation of proline hydroxylase (PHD)

Figure 2. Effects of MeHg on the expression of HIF-1a–related proteins in astrocytes. (A) Western blotting for HIF-1a in astrocytes following MeHg (0, 1,
2.5, 5 or 10 lM, 0:5 h) exposure. (B) Western blotting for HIF-1b in astrocytes following MeHg (0, 1, 2.5, 5, or 10 lM, 0:5 h) exposure. (C) Effect of MeHg
(0, 1, 2.5, 5, or 10 lM, 0:5 h) exposure on the expression of the downstream proteins of HIF-1a, including GLUT-1, EPO, and VEGF-A. b-actin was used as
the internal control. Note: Data are presented as mean±SD from three independent experiments (n=3). con, control (culture medium treatment without
MeHg); EPO, erythropoietin; GLUT-1, glucose transporter 1; HIF-1a, Hypoxia-inducible factor-1a; HIF-1b, Hypoxia-inducible factor-1b; MeHg, methylmer-
cury; VEGF-A, vascular endothelial growth factor A. *p<0:05 vs. control by one-way ANOVA with Dunnett’s post hoc test.
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(Marxsen et al. 2004). To define the potential contribution of
PHD-mediated inhibition of HIF-1a in response to MeHg treat-
ment, we treated astrocytes with 1mM DHB [a small-molecule
prolyl hydroxylase (PHD) inhibitor] (Siddiq et al. 2005) for 6 h
and exposed astrocytes to 10 lM MeHg for 0:5 h. Notably, com-
pared with cells treated with MeHg alone, astrocytic HIF-1a expres-
sion in cells treated with MeHg and either the proteasome inhibitor
(Figure 3C) or the PHD inhibitor (Figure 3E) was significantly
higher. In addition, both the proteasome inhibitor and PHD inhibitor
restored MeHg-inhibited cell proliferation (Figure 3D and 3F).

Effects of Pharmacologic and Genetic Manipulation of
HIF-1a on Cell Proliferation
We hypothesized that decreased HIF-1a protein contributes
to astrocytic cytotoxicity. To further confirm this hypothesis,

we treated astrocytes with CoCl2 (200 lM, 0:5 h) or 2-MeOE2
(10 lM, 0:5 h) in the absence or presence of MeHg (0:5 h ex-
posure). We used CoCl2, an inducer of HIF-1a expression
(Triantafyllou et al. 2006), and 2-MeOE2, a HIF-1a inhibitor
(Chen et al. 2008; Parada-Bustamante et al. 2015; Pribluda et al.
2000), to regulate HIF-1a expression in MeHg-treated astrocytes
(Figure 4A and 4C). Analogous to the data shown in Figure 3D
and 3F, overexpression of HIF-1a protein mitigated the
MeHg-reduced cell proliferation in astrocytes (p<0:05)
(Figure 4B), whereas down-regulation of HIF-1a protein sig-
nificantly aggravated the decline in astrocytic proliferation
caused by MeHg (p<0:05) (Figure 4D). To confirm this obser-
vation, we further used siRNA and adenovirus overexpression,
which target the HIF-1a gene (Figure 4E to 4H). Consistent
with the results of CoCl2 and 2-MeOE2 treatment, overexpres-
sion of HIF-1a significantly attenuated the decline in MeHg-

Figure 3. Effects of protein expression of HIF-1a and its downstream effectors and effects on cell proliferation induced by CHX, MG132, or DHB in MeHg-
treated astrocytes. (A) Astrocytes were treated with MeHg (0, 1, 2.5, 5, or 10 lM, 0:5 h) and HIF-1a mRNA was evaluated. mRNA was normalized to b-actin
and plotted relative to the control. *p<0:05 vs. the control by one-way ANOVA with Dunnett’s post hoc test. (B) Cells were pretreated with 400 lM CHX for
0.5, 1 and 2 h and then exposed to 10 lM MeHg for 0:5 h. MeHg treatment alone group (10 lM for 0.5, 1 and 2 h) was also established. HIF-1a protein levels
were analyzed by western blotting. b-actin was used to normalize the protein level and the intensities were presented as fold changes relative to the control.
*p<0:05 vs. the control by one-way ANOVA with Dunnett’s post hoc test. #p<0:05 the CHX+MeHg group vs. the corresponding time point of CHX alone
group by two-way ANOVA with Dunnett’s post hoc test. (C) Cells were pretreated with MG132 (1 lM, 24 h) and then treated with 10 lM MeHg for 0:5 h.
Western blotting was used to evaluate protein levels of HIF-1a, GLUT-1, EPO, and VEGF-A. (D) Effect of MG132 (1 lM, 24 h) on the cell proliferation was
evaluated using an MTT assay. (E) Effect of DHB pretreatment (1mM, 6 h) on the expression of HIF-1a, GLUT-1, EPO, and VEGF-A was detected by west-
ern blotting. (F) Effect of DHB pretreatment (1 mM, 6 h) on the cell proliferation was determined by an MTT assay. For Western blotting analyses, b-actin
was used to normalize the protein level. Note: Statistical analysis was performed by one-way ANOVA with Tukey’s post hoc test. Data are presented as
mean±SD from three independent experiments (n=3). CHX, cycloheximide; con, control (culture medium treatment without MeHg); DHB, 3,4-
Dihydroxybenzoic acid; EPO, erythropoietin; GLUT-1, glucose transporter 1; HIF-1a, Hypoxia-inducible factor-1a; MeHg, methylmercury; MG132, pro-
teasome inhibitor; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl diphenyltetrazolium bromide; VEGF-A, vascular endothelial growth factor A. *p<0:05
vs. control, #p<0:05 vs. MeHg only-group.

Environmental Health Perspectives 127006-6 127(12) December 2019



Figure 4. Effects of pharmacologic and genetic manipulation of HIF-1a on cell proliferation. (A) Astrocytes were pretreated with CoCl2 (200 lM, 0:5 h) and
then treated with 10 lM MeHg for 0:5 h. Western blotting was used to evaluate protein levels of HIF-1a, GLUT-1, EPO, and VEGF-A. (B) Effect of CoCl2
pretreatment (200 lM, 0:5 h) on the cell proliferation was evaluated using an MTT assay. (C) Effect of 2-MeOE2 pretreatment (10 lM, 0:5 h) on the expres-
sion of HIF-1a, GLUT-1, EPO, and VEGF-A was detected by Western blotting. (D) Effect of 2-MeOE2 pretreatment (10 lM, 0:5 h) on the cell proliferation
was evaluated using an MTT assay. For Western blotting analyses, representative blots are shown, and the intensities are presented as fold changes relative to
the control group (b-actin as the internal control). *p<0:05 vs. control, #p<0:05 vs. MeHg-only group. (E) The protein expression levels of HIF-1a, GLUT-1,
EPO, and VEGF-A after overexpression of HIF-1a. *p<0:05 vs. HBAD-null group. (F) Effect of adenovirus-induced HIF-1a overexpression on the decrease
in MeHg-induced cell proliferation as determined by an MTT assay. *p<0:05 vs. control group, #p<0:05 vs. MeHg+HBAD-null group. (G) Effect of HIF-1a
siRNA on the protein expression of HIF-1a, GLUT-1, EPO, and VEGF-A. (H) Effect of HIF-1a siRNA on the MeHg-induced decrease in cell proliferation.
Note: Statistical analysis was performed by one-way ANOVA with Tukey’s post hoc test. Data are presented as the mean± SD from three independent experi-
ments (n=3). CoCl2, cobalt chloride; con, control (culture medium treatment without MeHg); EPO, erythropoietin; GLUT-1, glucose transporter 1; HBAD,
pHBAd-EF1-MCS-GFP; HIF-1a, Hypoxia-inducible factor-1a; 2-MeOE2, 2-methoxyestradiol; MeHg, methylmercury; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl diphenyltetrazolium bromide; nc siRNA, negative control (scrambled sequence) siRNA; siRNA, small interfering RNA; VEGF-A, vascular endothe-
lial growth factor A. *p<0:05 vs. nc siRNA group. *p<0:05 vs. control group, #p<0:05 vs. MeHg+nc siRNA group.
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induced cell proliferation (Figure 4F), whereas inhibition of
HIF-1a significantly increased the decline in cell proliferation
(Figure 4H; p<0:05).

HIF-1a Protein Expression and Cell Proliferation
after Pretreatment with Antioxidants in
Methylmercury-Treated Astrocytes
We investigated whether ROS production were associated with
decreased HIF-1a expression in MeHg-exposed astrocytes.
Astrocytes were pretreated with NAC (2:5mM, 4 h) and Trolox
(2:5mM, 4 h) followed by 10 lM MeHg for 0:5 h. NAC and
Trolox are antioxidants that are commonly used to mitigate
ROS (Aremu et al. 2008; Bai et al. 2015; Kaur et al. 2010). As
shown in Figures 5A and 5C, cells pretreated with either NAC
or Trolox and then treated with MeHg exhibited higher HIF-1a
protein levels, similar to those of control cells, than those
treated with MeHg alone. Pretreated cells exhibited higher lev-
els (as much as ∼ 30%) of cell proliferation than those treated
with MeHg alone (p<0:05) (Figure 5B and 5D).

Protein Expression of HIF-1a and Downstream Effectors
following MeHg Administration in in Vivo Rat Models
Finally, to evaluate the in vivo effects of MeHg on HIF-1a protein
expression, we established a SD rat model. Animals were adminis-
tered with MeHg (0, 2, 4, 6, 8, and 10 mg=kg, each group with 6
rats) by intraperitoneal injection and sacrificed 0:5 h later. The
expression of HIF-1a and its target proteins in brain tissues was
measured by Western blotting. As shown in Figure 6, MeHg treat-
ment significantly decreased the expression of HIF-1a and its

targets, especially in rats exposed to 8 mg=kg and 10 mg=kg
MeHg (p<0:05).

Discussion
In the present study, we report that, compared with the vehicle
control, treatment with 5 or 10lM MeHg for 0:5 h resulted in
lower cell proliferation and higher ROS generation in primary rat
astrocytes, and these results were associated with lower expres-
sion of HIF-1a. To define the mechanism(s) of the MeHg-
induced alteration in HIF-1a expression, first we detected the
mRNA level of HIF-1a after MeHg treatment. The results
showed that MeHg exposure resulted in a significant reduction in
HIF-1a levels without affecting HIF-1a transcription. Then, we
speculated that whether MeHg affected the degradation of
HIF-1a protein. The results showed that treating cells with
CHX+MeHg results in lower protein expression of HIF-1a than
does treating cells with CHX alone in three different time points.
Because CHX blocks protein synthesis, it would stand to reason
that the effect of MeHg in these cells is associated with protein
degradation. Additionally, we also demonstrated that the protea-
some inhibitor (MG132) and the PHD inhibitor (DHB), both of
which block protein degradation of HIF-1a, partially restored the
inhibitory effect of MeHg on HIF-1a protein, further suggesting
that the MeHg-induced decrease in HIF-1a protein is due to the
promoted degradation. Furthermore, taking advantage of genetic
and pharmacological methods to alter inherent levels of the
HIF-1a protein, we provide evidence directly linking MeHg
toxicity with HIF-1a inhibition. It is noteworthy that lower
HIF-1a protein expression was related to the production of
ROS, as demonstrated by NAC and Trolox. Taken together, our

Figure 5. HIF-1a protein expression and cell proliferation after pre-treatment with antioxidants in MeHg-treated astrocytes. (A) Effect of NAC pretreatment
(2:5mM, 4 h) on HIF-1a protein expression. (B) Effect of NAC pretreatment on the decreased cell proliferation induced by MeHg. (C) Effect of Trolox pre-
treatment (2:5mM, 4 h) on HIF-1a protein expression. (D) Effect of Trolox pretreatment on the MeHg-induced decrease in cell proliferation. Note: Statistical
analysis was performed by one-way ANOVA with Tukey’s post hoc test. Data are presented as the mean±SD from three independent experiments (n=3).
con, control (culture medium treatment without MeHg); HIF-1a, Hypoxia-inducible factor-1a; MeHg, methylmercury; MTT, 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl diphenyltetrazolium bromide; NAC, N-acetyl-cysteine, Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid. *p<0:05 vs. control,
#p<0:05 vs. MeHg-only group.
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novel observations suggest that ROS act as an important regula-
tor of HIF-1a inhibition in MeHg-treated astrocytes and that
overexpression of HIF-1a may afford a novel neuroprotective
effect in the treatment of MeHg-induced neurotoxicity.
Moreover, we also found that MeHg inhibited the expression of
HIF-1a in the SD rat brain, which better revealed the relation-
ship between MeHg and the HIF-1a signaling pathway found in
the in vitro and in vivo experiments.

MeHg is an established neurotoxicant (Aschner and Syversen
2005; Clarkson and Magos 2006; Culbreth and Aschner, 2016;
Farina et al. 2011a, 2011b), whose mechanism(s) of toxicity have
yet to be fully understood; however, oxidative stress seems to play
a role (Aschner et al. 2007; Santos et al. 2018; Ishihara et al.
2016). Oxidative stress is one of the known mechanisms for the
induction of HIF-1a. Previous studies have consistently shown
that metals, such as lead (Das et al. 2015), aluminum (Mailloux
and Appanna 2007), manganese (Han et al. 2009), and zinc (Pan
et al. 2013; Park et al. 2018), as well as other xenobiotics, such as
isoflurane (Cao et al. 2018; Sun et al. 2013), can increase HIF-1a
expression. In contrast, concentration-dependent inhibition of
HIF-1a in Hep3B cells has been reported in response to cadmium
and inorganic mercury (Hg) treatment (Horiguchi et al. 2000).

We speculated that two factors contribute to the decreased level
of HIF-1a protein in response to MeHg treatment. First, MeHg-
induced mitochondrial damage might cause a reduction in oxygen
consumption and increase relative oxygen content, leading to redis-
tribution of oxygen and binding to PHD and an increase in PHD ac-
tivity (Wu et al. 2010), whereas other metals, including inorganic
mercury, mimicked a hypoxic state and induced pseudohypoxia to
promote the translocation of HIF-1a (Mailloux and Appanna 2007).
MeHg did not change the level of HIF-1a in brain microvascular
pericytes (Hirooka et al. 2013). Second, MeHg might increase 2-
oxoglutarate (2-OG) levels, a cofactor of PHD. 2-OG has been
shown to increase PHD activity, resulting in increased degradation
of HIF-1a and a net decrease in HIF-1a protein (Dehne et al. 2010;
Mailloux et al. 2009; Matsumoto et al. 2006). As shown in Figure
3, MeHg appeared to have activated PHD and UPS, thus promoting
HIF-1a degradation.

HIF-1a regulates the expression of a large number of genes
that are involved in glucose metabolism, energy production,
angiogenesis, migration, and other cellular processes (Liu et al.
2012; Semenza 2002). Thus, reduced availability of HIF-1a and
the subsequent reduction in expression of its target genes may
cause cellular dysfunction. VEGF-A, GLUT-1, and EPO are typi-
cal downstream target proteins of HIF-1a (Ashok et al. 2017;
Cramer et al. 2003; Mense et al. 2006; Semenza 2002). VEGF-

induced angiogenesis has previously been shown to improve the
blood supply to neurons and slow the clinical deterioration in
Alzheimer’s disease (Bogaert et al. 2006). VEGF and EPO have
been shown to improve tissue oxygen content by promoting
erythropoiesis and angiogenesis, which may stimulate genes
involved in glucose transport and metabolism (Ashok et al. 2017;
Semenza 2002). It is noteworthy that HIF-1a complexes can reg-
ulate the biological functions of various genes, such as those
involved in vascular growth, oxygen transport, and energy metab-
olism (Czibik 2010). Thus, we suggest that the mechanism of
MeHg neurotoxicity involves, at least in part, a reduction in
HIF-1a and its downstream proteins (GLUT-1, EPO, and VEGF-
A), leading to secondary alterations in blood flow, tissue oxygen-
ation, and ATP production. In addition, studies on the regulation
of PHD have generated interest as investigational drugs for ane-
mia and neurodegenerative diseases. The use of a small molecule
of HIF-1a PHD inhibitor (FG-4592), has been promoted to clini-
cal trials for treating anemia by increasing erythropoiesis through
HIF-1a mediated transcription (Besarab et al. 2016; Chen et al.
2017; Haase 2017), as well as for treating Parkinson’s disease by
HIF-1a-targeted positive regulation of redox biology and mito-
chondrial function (Li et al. 2018). In the present study, the sup-
pression of MeHg toxicity by both CoCl2 and adenovirus-
targeted HIF-1a overexpression suggested that activation of the
HIF-1a pathway can reverse inhibition of cell proliferation by
MeHg (Figure 4). Thus, we suggest that HIF-1a can be pursued
as a novel target for MeHg poisoning.

MeHg-induced toxicity is mediated, at least in part, by oxida-
tive stress (Polunas et al. 2011; Yee and Choi 1996). In addition,
rapid degradation of HIF-1a may result from ROS generation
(Beattie et al. 2005; Cairo et al. 1996; Henkel and Krebs 2004;
Jaeckel et al. 2005; Li et al. 2006; Sato and Kondoh 2002). We
initially considered that ROS generation could play a role in the
altered HIF-1a protein expression to mediate MeHg toxicity.
Treatment of rat astrocytes with oxygen radical scavengers (NAC
and Trolox) resulted in higher HIF-1a protein expression and
increased cell proliferation (Figure 5), suggesting that detoxifica-
tion of ROS by HIF-1a is associated with its neuroprotective
effects. Reductions in HIF-1a expression in MeHg-treated astro-
cytes and rats suggest that the up-regulation of HIF-1a affords neu-
roprotective effects. Taking into account the limitations of the
pharmacological and genetic regulations of clinical toxicity and
the ability of antioxidants to promote HIF-1a expression, the use
of antioxidants should be considered for clinical detoxification.
However, MeHg can affect many cellular and molecular functions
if the MeHg exposure concentrations and duration are sufficient.

Figure 6. Protein expression of HIF-1a and downstream effectors following MeHg administration in in vivo rat models. Adult Sprague-Dawley rats were
administered with MeHg (0, 2, 4, 6, 8, 10 mg=kg) by intraperitoneal injection for 0:5 h. Whole brain lysates were analyzed by Western blotting for the indi-
cated proteins. Note: Data are presented as mean±SD (n=6 rats=group). con, control (intraperitoneal injection of saline); EPO, erythropoietin; GLUT-1, glu-
cose transporter 1; HIF-1a, Hypoxia-inducible factor-1a; MeHg, methylmercury; VEGF-A, vascular endothelial growth factor A. *p<0:05 vs. control group
by one-way ANOVA with Dunnett’s post hoc test.
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Thus, additional research on the toxicological significance of
HIF-1a suppression by acute exposure to MeHg is warranted, in
addition to a more precise delineation of its protective mechanisms.

In conclusion, we demonstrated that MeHg led to astrocytic
neurotoxicity in vitro by reducing levels of HIF-1a and its down-
stream proteins, which may result from increasing PHD activity,
which in turn promoted HIF-1a degradation. Furthermore, the
up-regulation of HIF-1a imparted protection against MeHg neu-
rotoxicity. Taken together, these findings—from both in vivo and
in vitro experiments—suggest that HIF-1a may be as of yet an
unrecognized and important mediator or regulator of MeHg-
induced neurotoxicity, and this means of increasing HIF-1a acti-
vation in astrocytes may afford a therapeutic strategy for mitigat-
ing MeHg poisoning.
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